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1 Motivation and significance of the project

Computational sciences constitute nowadays one of the driving force towards scientific discovery. As the
numerical simulations and computations become more and more realistic and sophisticated the required
computer resources increase. Today’s simulations are possible thanks to the simultaneous joint progress
in efficient computer architectures, algorithms and supercomputer facilities. Nevertheless, further break-
throughs need new approaches and new ideas to increase the algorithmic performance.

In order to be more specific we take the example of ab initio elementary particle physics simulations which
are based on Markov Chain Monte Carlo type of algorithms. Often calculating expectation values of physical
observables corresponds to evaluating highly dimensional integrals. The latter in the spirit of Monte Carlo
integration requires sampling from some very complicated probability distribution. This can be realized
exactly using Markov Chains with a carefully chosen transition probabilities. Such approach turned out to
be extremely successful as it guarantees exactness based on results in the theory of stochastic processes,
reproducibility and robust handling of uncertainties. Monte Carlo simulations in different branches of
physics [4, 5]: statistical physics, solid state physics, astroparticle physics [3], elementary particle physics
and Beyond the Standard Model physics [6] but also in chemistry, economy have yielded a great amount of
new results.

The computational cost of such simulations is most often proportional to the cost of generating new,
statistically independent samples. As we approach the continuum limit in our discretized simulation the
cost of the new independent sample increases significantly which is a well known phenomenon called critical

slowing down. Also, when the simulated system exhibits different phases with different symmetry properties
or has non-local excitations, for instance topological kind of objects, the sampling becomes ineffective and
the simulations tend to be trapped in only one of the phases. Autocorrelations in such situation may increase
and the computational cost rises by factors of 100 or more.

In this project we tackle this fundamental problem with Artificial Intelligence inspired algorithms. We
propose to investigate the effectiveness of typical sampling algorithms where the proposals for new samples
are generated by neural networks. In the last two years it was shown in a couple of pioneering papers that the
incorporation of a Variational Autoregressive Neural (VAN) network into the Hastings-Metropolis algorithm
in the case of the 2D Ising model has a large impact on the effective autocorrelation time Ref. [9, 10].
This approach was named Neural Markov Chain Monte Carlo (NMCMC) and was further generalized
to more complex systems, such as a U(1) gauge theory in two dimensions in Ref. [7]. The importance
of this research direction can be demonstrated by the fact that the leading American universities, MIT,
Harvard, Northeastern and Tufts have recently launched a dedicated research institute: Institute for Artificial
Intelligence and Fundamental Interactions (IAIFI) [8]. One of the three research topics developed at IAIFI
is the described above Ab Initio AI for Theory Calculations: Accelerating Lattice Field Theory with AI.

This research direction is exactly aligned with the main topics of DigiWorld. Specifically, it touches
the domains 1. Advanced computational methods and Artificial Intelligence and 4. Artificial

Intelligence in exact and natural sciences.

2 Expected results

In this project we will consider the Ising model in two-dimensions on a square lattice of size N × N . A
particular configuration of spins s occurs with the Boltzmann probability

p(s) =
1

Z
e−βH(s) (1)
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Figure 1: Differences of magnetization obtained for
different values of β for a 42 lattices. Figure taken
from K. Szota Bachelor Thesis, Ref. [1].

We construct a neural network which approxi-
mates the distribution p by a distribution qθ. The
probability qθ(s) of a given spin configuration de-
pends on the weights (parameters) of the neural net-
work θ. To model the distribution probability p we
use a VAN neural network. We label all spins and
we express the conditional probability of spin si in
terms of probabilities of previous spins s<i [9] as,

qθ(s) =
N
∏

i=1

qθ(si|s1, . . . , si−1) (2)

In practice, the neural network is given on input a
spin configuration s for which it evaluates log qθ(s)
[9].

This construction has a great advantage that it
can be used to generate a spin configuration s which
follows the probability distribution qθ. This can
be easily done by reverting the conditional proba-
bilities. Having the configuration, we estimate its
probability log qθ(s) and compare it with the exact
probability p(s). This comparison can be used to
correct the weights θ.
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Figure 2: Autocorrelation functions for different val-
ues of β for a 42 lattice. Figure taken from S. Sauer
Bachelor Thesis, Ref. [2].

Following the ideas of Ref. [10], the spin con-
figuration proposed by the neural network, which
follows probability distribution qθ is subjected to an
accept/reject step according to the following rule

min
(

1,
qθ(s

′)e−βH(s)

qθ(s)e−βH(s′)

)

(3)

where the spin configuration s′ is the previous ana-
lyzed configuration.

We have implemented this method and per-
formed initial tests in the course of two Bachelor the-
sis [1, 2] performed in 2020 at the Jagiellonian Uni-
versity. Figure 1 demonstrates the data for the mean
magnetization obtained in three different ways:

1. Hastings-Metropolis algorithm

2. algorithm proposed in Ref. [9]

3. NMCMC algorithm proposed in Ref. [10]

We demonstrated that the differences between the
traditional approach 1 and 3 are all compatible with
0 showing that the sampling is correct in the en-
tire range of temperatures investigated. In figure 2
we present the autocorrelation functions. We see a
sharp drop of these functions indicating a short leading autocorrelation time. However, we also discovered
a very large, subleading autocorrelation time. It was not noticed in the cited references [9,10] and its origin
is for now unknown. It is the aim of this minigrant to deepen these studies and clarify and quantify the
autocorrelations induced by the VAN neural network and the accept/reject step.

In the course of this short grant we propose to continue these studies and thoroughly investigate the
autocorrelation times of consecutive samples generated by the NMCMC approach for the case of two-
dimensional Ising model. We propose to extend the results obtained in Ref. [10] by studying this problem
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analytically by analyzing semi-numerically the transfer matrix of the associated Markov Chain. Analytic
results will be confirmed by numerical simulations. The expected results will allow to understand the impact
of the accept/reject step on the autocorrelation time. Furthermore, we propose to consider a toy-model taken
from the studies of topological quantum field theory where states have different topological properties and
therefore for which the traditional Markov Chain Monte Carlo would not be applicable as the algorithm
is not able to introduce global changes of topology during the local changes in the sampling procedure. A
neural network enhanced algorithm may be able to overcome this limitation, thus opening a completely new
branch of models suitable to numerical simulations

The results of this project (published in academic journals and in form of internal notes) will be used as
a base for a NCN grant application.

3 Innovation of the proposed project

This project is innovative as it leads to a definition of an improved simulation algorithm allowing to generate
samples from a given distribution probability with small autocorrelation times.

4 Interdisciplinary nature of the project

Computational sciences are at the crossroads of natural and exact sciences. Advances in simulation al-
gorithms have immediate consequences in different branches of science: chemistry, physics, economy, and
others, everywhere where stochastic sampling is used. In the project we will use as a test-bed for our inves-
tigations simple models from statistical physics and topological quantum field theory, however results will
have deep consequences for application to solid state physics, atomic physics or elementary particle physics.
Our team is composed of physicists and computer scientists and spans over the Institute of Theoretical
Physics WFAIS and Institute of Applied Computer Sciences WFAIS.

5 International collaboration

The work will be performed in collaboration with Salvatore Cali, a postdoc at Massachussetts Institute of
Technology, Cambridge, USA (MIT) from January 2021 in the Lattice Quantum Chromodynamics group
of Phiala Shanahan. Currently Salvatore Cali is a postdoc at the Jagiellonian University. Our preprint [11]
was submitted to Phys. Rev. Lett. and is in the second stage of the refereeing process. Phiala Shanahan
was one of the authors of the generalization of the AI inspired Markov Chain Monte Carlo proposals for the
U(1) gauge theory published in Phys. Rev. Lett. [7]. She is also employed at the IAIFI.
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